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Program Overview: VTO Powertrain Materials Core Program

Timeline/Budget Barriers
- Budget: $30M/5 years * Increasing engine power densities & higher efficiency
engines; resulting in increasingly extreme materials demands
« Program Start: Oct 2018 (increased pressure and/or temperature)
« Program End: Sept 2023 - Affordability of advanced engine materials & components
- 30% Complete « Accelerating development time of advanced materials

- Scaling new materials technologies to commercialization

FY20 Program Research Thrusts PG"'EE:""Q

1. Cost Effective LW High Temp Engine Alloys $1.05M ORNL * Progrom Lead Lab

2. Cost Effective Higher Temp Engine Alloys $1.525M ORNL, PNNL —Oak Rldge National Lab (ORNL)

3. Additive Manufacturing of Powertrain Alloys $1.075M ORNL ° Progrom Partner Labs

4A. Advanced Characterization $1.025M ORNL, PNNL, ANL —Pacific Northwest National Lab (PNNL)
4B. Advanced Computation $0.60M ORNL —Argonne National Lab (AN |_)

5. Exploratory Research: Emerging Technologies $0.75M ORNL, PNNL, ANL

%OAK RIDGE Program structure includes three alloy development thrusts (1-3), a foundational support thrust (4), and a
National Laboratory thrust for one-year exploratory projects (5).




Project Overview: Subtask 3A1

Timeline/Budget Barriers

Project start: Oct 2018 * New, adlloys tailored for additive manufacturing (AM) are needed -
, very few commercial alloys available for AM
Project end: Sep 2022 Y Y

Percent complete: 37%

« Cost and scaling barriers for AM

- 3A1 Budget - Little prior work on high temperature lightweight alloys via AM
— FY19: $300k - Development time. Project leverages an Integrated
— FY20: $425K computational materials engineering (ICME) framework to reduce

the early & mid-stage development time of new LW alloys by 50%.

Thrust 3: Tasks/Subtasks | Lab [ TRL|__Pi(s) | FY19 | FY20_

Task 3A. Fundamental Development of Lightweight Alloys for AM

* Subtask 3A1 Lead
—Qak Ridge Natfional Lab (ORNL)

ORNL Low

* 3A1. Fundamental Development of Plotkowski
Lightweight Alloys for AM Shyam $300k  $425k

« 3A2. AMIPC (hybrid manuf. of composites) ~ ORNL  Low splitter $250k  $225k  ° Subtask 3A1 Partners
—University of Tennessee

Task 3B. Development of Higher Temperature Alloys for AM ) i
—Northwestern University

-+ B1. Fundamentals of Austenitic Alloys by AM~ ORNL  Low Dryepondt $200k $200k Thrust 4
—Oak Ri National L RNL
« 3B2. Ferritic alloys for HD Pistons via AM ORNL  Low NO”EﬁWf”O $325k  $225k Oak Ridge ariond ab (ORNL)
0 —Argonne National Lab (ANL)

Subtotals 51,125k $1.075k —Pacific Northwest National Lab (PNNL)
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Relevance

* Power density of OEM engines have stagnated as the
available alloys cannot meet the need for high-
temperature (250-400°C) performance
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« Metal additive manufacturing (AM) offers new design

opportunities to improve performance, particularly for o
lightweight alloys such as Aluminum wol——e
- Strong OEM intereSt Comparison ofi:\jln\gjé:\cl):oz/;)ht properties
. . . . . (see alt-text)
— Powertrain applications (pistons, cylinder heads, turbochargers,
etc.)

« But commercial aluminum alloy selection for AM is limited
— Hot-tear susceptibility of conventional Al alloys
— Poor high-temperature property retention

* Design of new Al alloys for AM has potential to achieve
unique microstructures and superior properties to
Improve engine performance and fuel economy

%OAK RIDGE

National Laboratory




Milestones

Fundamental Development of LW Alloys for AM

* FY20 Q1 (3A1): Submit manuscript on the structure and high

temperature properties of new, additively manufactured Al-Ce-
Mn alloy COMPLETE

* FY20 Q4 (3A1), Go/No go: Design, acquire custom powders and
print four new higher temperature additive aluminum alloy
compositions from Cu and/or Ce as the primary alloying
additions ON TRACK

¥ OAK RIDGE
National Laboratory




Approach — Alloy Design Targets

New alloys designed for the unique
processing characteristics of AM
will simultaneously enable new
design concepts and improved
properties vs what can be achieved
with conventional processing
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« Learn from casting, welding, and rapid
, solidification communities
Review - Apply fundamental materials knowledge

Literature
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Previous Research on Cast Alloy Design

« Design of a castable Al-Cu
based alloy with thermally
stable mechanical properties at
300°C

» Developed Al-Cu-Mn-Zr (ACMZ)
class of alloys

« R&D 100 award

e Industrial trials — FCA cylmder
neads
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Technical Accomplishments and Progress

« Successful additive manufacturing of ACMZ alloy

« Microstructure is fundamentally different from
conventional processing due to rapid
solidification conditions during laser AM

Highly refined bimodal grain structure
with grain refinement at melt pool
boundaries from Al;Zr particles acting
as nucleation sites

Al,Cu 0 particles are
extremely fine and
distributed throughout the
microstructure rather than
forming at grain boundaries

%OAK RIDGE

National Laboratory



Technical Accomplishments and Progress

« Unigue AM microstructure leads

to superior mechanical properties 5 i —MdieAcz | g :::q.-:g?:é:ﬁ;w.) :
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Technical Accomplishments and Progress
ACMZ - DoE

« ACMZ alloy Is castable, but still prone

to hot-tearing during AM, so
processing range is narrow

« Hot-tearing is a function of both alloy

composition & process conditions

 There is a need to develop alloys

with wide processing plateaus

« Available models may be used to

%OAK RIDGE

assess hot tearing relative to alloy
composition
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Design of experiments
to identify crack-free
process conditions
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Technical Accomplishments and Progress

« Our newly developed AlI-Cu-Ce based alloys have low hot-tear susceptibility
compared to wrought alloys & even to the commercial AlSi10Mg alloy most
commonly used for laser AM

« Using high-throughput computational thermodynamics models, we have mapped

the hot-tear susceptibility through the Al-rich corner of th

alloy design
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Technical Accomplishments and Progress

Designed three alloys in the » Al-Ce-Cu system shows excellent hot-tear resistance
Al-Cu-Ce system for excellent - Zr addition further improves hot-tear resistance through
printability and combinations grain refinement, and offer precipitation hardening

of strengthening mechanisms: . i added for solid solution strengthening

Al-9Cu-6Ce Al-9Cu-6Ce-1Zr Al-9Cu-6Ce-1Zr-0.5Mn
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Technical Accomplishments and Progress

Al-Cu-Ce Al-Cu-Ce-Zr Al-Cu-Ce-Zr-Mn
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Technical Accomplishments and Progress

 Tensile properties show a significant improvement over what can be
achieved with printable Al10SIMg based commercial alloys

* Improved strength retention at elevated temperature, particularly
between 300-400°C
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Collaboration and Coordination

— University of Tennessee — Dr. Suresh Babu
« Rapid process optimization and characterization

— Northwestern University — Dr. David Dunand
« Microstructure and creep of AM eutectic Al alloys

— University of Sydney — Dr. Simon Ringer
« Advanced characterization of Al-Ce-Mn alloys

— University of New South Wales — Dr. Sophie Primig
« Advanced characterization of Al-Cu-Ce alloys

— Thrust 4A: Advanced Characterization — Larry Allard
— Thrust 4B: Advanced Computation — Ying Yang

%OAK RIDGE

National Laboratory
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Remaining Challenges and Barriers
* Non-equilibrium solidification conditions

— Solidification mode is not consistent with alloy thermodynamics due to
high solidification rates and generates novel microstructures

— These effects complicate interpretation of hot-tearing criterion based
on Schell simulations

— Resulting microstructure gives unique properties that are not always
analogous to cast counterparts, requiring significant
characterization and expert interpretation

 Lead-time and expense for powder feedstock production

« Response to previous year reviewers’ comments:

— Project was not reviewed last year

%OAK RIDGE
Nat:

ional Laboratory




Proposed Future Research

* FY20

— Fabricating four additional alloy compositions
— Alloys designed based on previous results

* FY21 and beyond

— Alloy characterization to understand non-equilibrium microstructure evolution
In response to AM processing

— Codifying design rules for printability and high-temperature properties

— Prototype components for powertrain applications
 Pistons, cylinder heads, turbocharger components

pa—
AN
%OAK RIDGE Any proposed future work is subject to change
Nat

ional Laboratory based on funding levels.




Summary
« Approach

— Design new Al alloys for additive manufacturing to produce unique microstructures and superior
property combinations

— Targeting design toward resistance to hot-tearing and good high-temperature mechanical
properties
« Technical Accomplishments

— Demonstrated successful additive manufacturing of previously developed (for casting) AICuMnZr
alloy with mechanical properties superior to the peak-aged cast versions

— Developed hot-tear resistant Al-Cu-Ce alloys with further improvements in printability

 Collaborators
— University of Tennessee, Northwestern University, University of Sydney, University of New South
Wales
* Future Work
— Four additional new alloy compositions in development for FY20
— Advanced characterization to understand non-equilibrium microstructure in AM

— Pursuing opportunities for powertrain component prototyping and demonstration
%OAKRIDGE

National Laboratory




Technical Back-Up Divider Slide

%OAK RIDGE

National Laboratory
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nnical Back-Up: Example Mechanical Properties
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Technical Back-Up: FY20 Results — Submitted Publication

on AM Al-Ce-Mn
* In review at Acta Materialia

Heterogeneous Thermal Exposure and Fracture Behavior and High hardness and Excellent high-
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